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How does one determine the spin-orbitals φJ and then how does one determine
 the CI coefficients CJ?  

This reduces the HF calculation to a matrix eigenvalue equation
Σµ=1,Μ <χν |he| χµ> CJ,µ = εJ Σµ=1,Μ <χν|χµ> CJ,µ

Here, he is the Fock operator- kinetic, nuclear attraction, J-K and nuclear

 repulsion



2 

The number of these one- and two electron integrals scales with the basis set size
 M as M2 and M4. 
The computer effort needed to solve the MxM eigenvalue problem scales as M3.
The sum over K runs over all of the occupied spin-orbitals in the state studied. 
Recall this makes the occupied orbitals “feel” N-1 other electrons, but the virtual
 orbitals “feel” the N occupied spin-orbitals. 

The nuclear repulsion energy ΣA<BZZZB/|RA-RB| is included but it is often not
 explicitly displayed.

The quantity γη,κ = ΣK=occ CK,η CK,γ is called the one-electron density matrix  
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A so-called self-consistent field (SCF) process is used to address this: 
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The MxM Fock matrix is then formed using these CK,µ coefficients:

<χν| –2/2m ∇2 |χµ> + ΣA<χν| -ZAe2/|r-RA| |χµ> 
+ Ση,κΣK=occ CK,η CK,γ [<χν(r) χη(r’) |(e2/|r-r’|) | χµ(r) χγ(r’)> 

– <χν(r) χη(r’) |(e2/|r-r’|) | χγ(r) χµ(r’)>] 

The HF equations are solved to obtain M sets of “new” CK,µ coefficients: 

Σµ <χν |he| χµ> CJ,µ = εJ Σµ <χν|χµ> CJ,µ
N of these “new” CK,µ coefficients are used to form a “new” Fock matrix.
The HF equations are solved to obtain M “newer” CK,µ coefficients. 
This  iterative  solution  is  continued  until  the  CK,µ  coefficients  used  in  one
 iteration are identical to those obtained in the next solution of the Fock matrix.

 One has then achieved self-consistency.

Which N?
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When a molecule has point group symmetry, most programs will form symmetry
adapted combinations of the basis functions 

χ’ν(r|R) = Σµ=1,Μ χµ(r|R) dsymmetry
ν,µ 

and the HF molecular spin-orbitals will be LCAO-expressed in terms of them. In
this case, the MxM Fock matrix will be block-diagonal as shown below.
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It is crucial to understand that it is by “guessing” the initial values of the
 LCAO-MO coefficients of the N occupied spin-orbitals that one specifies for
 which electronic state the HF-SCF spin-orbitals are to be obtained.  

That is, one inputs the CK,µ coefficients of the N occupied spin-orbitals, then
 an MxM Fock matrix is formed and its M eigenvalues εK and M eigenvectors
 CK,µ are obtained. 
However, of the M spin-orbitals thus determined, only N are occupied.

One has to be very careful (often by visually examining the HF orbitals) that the
 spin-orbitals one wants occupied for the electronic state of interest are those
 included  in  the  list  of  occupied  spin-orbitals  in  each  iteration  of  the  SCF
 process.  This  is  especially  critical  when  studying  excited  states  where  the
 occupied spin-orbitals are probably not those having the lowest orbital energies
 εK. Let’s consider an example to illustrate the problem.
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 An SCF calculation on neutral formamide using an aug-cc-pVDZ basis
 set produces the orbitals shown below. The orbital energies for the bonding and
 non-bonding OCN π MOs (HOMO-2 and HOMO) are -15.4 and -11.5 eV,
 respectively. The HOMO-1 orbital is a lone pair orbital on the oxygen atom. The
 SCF orbital energy of the lowest unoccupied molecular orbital (LUMO) is +0.72
 eV. However, the LUMO is not even of π* symmetry, nor is the LUMO+1 or the
 LUMO+2 orbital. The lowest unoccupied orbital of π* character is the LUMO+3,
 and this orbital has an energy of + 2.6 eV.  

Suppose  one  were  interested  in  studying  an  anionic  state  of
 formamide in which the excess electron occupies the OCN π* orbital.  

So, to study formamide anion in its π*
 state, one must “guess” the CK,µ coefficients of
 the LUMO+3 as an occupied MO! 
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Why UHF Wavefunctions are not eigenfunctions of S2
<χν| he| χµ> = <χν| –2/2m ∇2 |χµ> + ΣA<χν| -ZAe2/|r-RA| |χµ> 

+ Ση,κΣK CK,η CK,γ [<χν(r) χη(r’) |(e2/|r-r’|) | χµ(r) χγ(r’)> 

– <χν(r) χη(r’) |(e2/|r-r’|) | χγ(r) χµ(r’)>]. 
Consider C: 1s22s22pzα2pyα 3P
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 How much different are the α and β spin-orbitals? 

Here are the α (SOMO) and β (LUMO) orbitals of the dipole-bound LiF– 

ε = – 0.01219 Hartrees ε = + 0.10228 Hartrees
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This spin difference means that, even though an ROHF wave function

€ 

|φ1sαφ1sβφ2sαφ2sβφ2pxαφ2pyα |
is a MS = 1 triplet function, the UHF process causes the 1s and 2s spin-
orbitals of α and β spin to be different. So, the UHF function is really

€ 

|φ1sαφ '1sβφ2sαφ '2sβφ2pxαφ2pyα |

Although this function has MS = 1, it is not a triplet (because the 1s and 2s
spin-orbitals are not coupled together into singlet functions. 

Most programs will compute the expectation value of S2  (using

  

€ 

S2 = S−S+ + SZ
2 + SZ )

so one can be aware of how spin contaminated the UHF function is. The above
carbon function should have S = 1 (so S(S+1) = 2), but it contains components
of S = 1, 2, and 3, because each φα φ’β spin-orbital product is a mixture of S =
 0 and S =1.
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